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Abstract

We describe a convergence acceleration technique for generic optimization prob-
lems. Our scheme computes estimates of the optimum from a nonlinear average
of the iterates produced by any optimization method. The weights in this average
are computed via a simple and small linear system, whose solution can be updated
online. This acceleration scheme runs in parallel to the base algorithm, provid-
ing improved estimates of the solution on the fly, while the original optimization
method is running. Numerical experiments are detailed on classical classification
problems.

1 Introduction

Suppose we want to solve the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex with respect to the Euclidean norm with
parameter µ, and has a Lipschitz continuous gradient with parameter L with respect to the same norm.
This class of function is often encountered, for example in regression where f(x) is of the form

f(x) = L(x) + Ω(x),

where L(x) is a smooth convex loss function and Ω(x) is a smooth strongly convex penalty function.

Assume we solve this problem using an iterative algorithm of the form

xi+1 = g(xi), for i = 1, ..., k, (2)

where xi ∈ Rn and k the number of iterations. Here, we will focus on the problem of estimating the
solution to (1) by tracking only the sequence of iterates xi produced by an optimization algorithm.
This will lead to an acceleration of the speed of convergence, since we will be able to extrapolate
more accurate solutions without any calls to the oracle g(x).

Since the publication of Nesterov’s optimal first-order smooth convex minimization algorithm [1], a
significant effort has been focused on either providing more explicit interpretable views on current
acceleration techniques, or on replicating these complexity gains using different, more intuitive
schemes. Early efforts were focused on directly extending the original acceleration result in [1] to
broader function classes [2], allow for generic metrics, line searches or simpler proofs [5, 6], produce
adaptive accelerated algorithms [7], etc. More recently however, several authors [8, 9] have started
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using classical results from control theory to obtain numerical bounds on convergence rates that
match the optimal rates. Others have studied the second order ODEs obtained as the limit for small
step sizes of classical accelerated schemes, to better understand their convergence [10, 11]. Finally,
recent results have also shown how to wrap classical algorithms in an outer optimization loop, to
accelerate convergence [12] and reach optimal complexity bounds.

Here, we take a significantly different approach to convergence acceleration stemming from classical
results in numerical analysis. We use the iterates produced by any (converging) optimization algorithm,
and estimate the solution directly from this sequence, assuming only some regularity conditions on the
function to minimize. Our scheme is based on the idea behind Aitken’s ∆2 algorithm [13], generalized
as the Shanks transform [14], whose recursive formulation is known as the ε-algorithm [15] (see e.g.
[16, 17] for a survey). In a nutshell, these methods fit geometrical models to linearly converging
sequences, then extrapolate their limit from the fitted model.

In a sense, this approach is more statistical in nature. It assumes an approximately linear model
holds for iterations near the optimum, and estimates this model using the iterates. In fact, Wynn’s
algorithm [15] is directly connected to the Levinson-Durbin algorithm [18, 19] used to solve Toeplitz
systems recursively and fit autoregressive models (the Shanks transform solves Hankel systems, but
this is essentially the same problem [20]). The key difference here is that estimating the autocovariance
operator is not required, as we only focus on the limit. Moreover, the method presents strong links
with the conjugate gradient when applied to unconstrained quadratic optimization.

We start from a slightly different formulation of these techniques known as minimal polynomial
extrapolation (MPE) [17, 21] which uses the minimal polynomial of the linear operator driving
iterations to estimate the optimum by nonlinear averaging (i.e., using weights in the average which are
nonlinear functions of the iterates). So far, for all the techniques cited above, no proofs of convergence
of these estimates were given in the case where the iterates made the estimation process unstable.

Our contribution here is to add a regularization in order to produce explicit bounds on the distance to
optimality by controlling the stability through the regularization parameter, thus explicitly quanti-
fying the acceleration provided by these techniques. We show in several numerical examples that
these stabilized estimates often speed up convergence by an order of magnitude. Furthermore this
acceleration scheme thus runs in parallel to the original algorithm, providing improved estimates of
the solution on the fly, while the original method is progressing.

The paper is organized as follows. In section 2.1 we recall basic results behind MPE for linear
iterations and we will introduce in section 2.2 a formulation of the approximate version of MPE and
make a link with the conjugate gradient method. Then, in section 2.3, we generalize these results to
generic nonlinear iterations and show, in section 2.4, how to fully control the impact of nonlinearity.
We use these results to derive explicit bounds on the acceleration performance of our estimates.

2 Approximate Minimal Polynomial Extrapolation

In what follows, we recall the key arguments behind minimal polynomial extrapolation (MPE) as
derived in [22] or also [21]. We also explain a variant called approximate minimal polynomial
extrapolation (AMPE) which allows to control the number of iterates used in the extrapolation, hence
reduces its computational complexity. We begin by a simple description of the method for linear
iterations, then extend these results to the generic nonlinear case. Finally, we fully characterize the
acceleration factor provided by a regularized version of AMPE, using regularity properties of the
function f(x), and the result of a Chebyshev-like, tractable polynomial optimization problem.

2.1 Linear Iterations

Here, we assume that the iterative algorithm in (2) is in fact linear, with

xi = A(xi−1 − x∗) + x∗, (3)

where A ∈ Rn×n (not necessarily symmetric) and x∗ ∈ Rn. We assume that 1 is not an eigenvalue
of A, implying that (3) admits a unique fixed point x∗. Moreover, if we assume that ‖A‖2 < 1, then
xk converge to x∗ at rate ‖xk − x∗‖2 ≤ ‖A‖k2‖x0 − x∗‖. We now recall the minimal polynomial
extrapolation (MPE) method as described in [21], starting with the following definition.
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Definition 2.1 GivenA ∈ Rn×n, s.t. 1 is not an eigenvalue ofA and v ∈ Rn, the minimal polynomial
of A with respect to the vector v is the lowest degree polynomial p(x) such that

p(A)v = 0, p(1) = 1.

Note that the degree of p(x) is always less than n and the condition p(1) = 1 makes p unique. Notice
that because we assumed that 1 is not an eigenvalue of A, having p(1) = 1 is not restrictive since
we can normalize each minimal polynomial with the sum of its coefficients (see Lemma A.1 in
the supplementary material). Given an initial iterate x0, MPE starts by forming a matrix U whose
columns are the increments xi+1 − xi, with

ui = xi+1 − xi = (A− I)(xi − x∗) = (A− I)Ai(x0 − x∗). (4)

Now, let p be the minimal polynomial of A with respect to the vector u0 (where p has coefficients ci
and degree d), and U = [u0, u1, ..., ud]. So∑d

i=0 ciui =
∑d
i=0 ciA

iu0 = p(A)u0 = 0 , p(1) =
∑d
i=0 ci = 1. (5)

We can thus solve the system Uc = 0,
∑
i ci = 1 to find p. In this case, the fixed point x∗ can be

computed exactly as follows

0 =
∑d
i=0 ciA

iu0 =
∑d
i=0 ciA

i(A− I)(x0 − x∗)
= (A− I)

∑d
i=0 ciA

i(x0 − x∗) = (A− I)
∑d
i=0 ci(xi − x∗).

Hence, using the fact that 1 is not an eigenvalue of A and p(1) = 1,

(A− I)
∑d
i=0 ci(xi − x∗) = 0 ⇔

∑d
i=0 ci(xi − x∗) = 0 ⇔

∑d
i=0 cixi = x∗.

This means that x∗ is obtained by averaging iterates using the coefficients in c. The averaging in this
case is called nonlinear, since the coefficients of c vary with the iterates themselves.

2.2 Approximate Minimal Polynomial Extrapolation (AMPE)

Suppose now that we only compute a fraction of the iterates xi used in the MPE procedure. While the
number of iterates k might be smaller than the degree of the minimal polynomial of A with respect
to u0, we can still try to make the quantity pk(A)u0 small, where pk(x) is now a polynomial of degree
at most k. The corresponding difference matrix U = [u0, u1, ..., uk] ∈ Rn×(k+1) is rectangular.

This is also known as the Eddy-Mešina method [3, 4] or reduced rank extrapolation with arbitrary k
(see [21, §10]). The objective here is similar to (5), but the system is now overdetermined because
k < deg(P ). We will thus choose c to make ‖Uc‖2 = ‖p(A)u0‖2, for some polynomial p such that
p(1) = 1, as small as possible, which means solving for

c∗ , argmin ‖Uc‖2 s.t. 1T c = 1 (AMPE)

in the variable c ∈ Rk+1. The optimal value ‖Uc∗‖2 of this problem is decreasing with k, satis-
fies ‖Uc∗‖2 = 0 when k is greater than the degree of the minimal polynomial, and controls the
approximation error in x∗ with equation (4). Setting ui = (A− I)(xi − x∗), we have

‖
∑k
i=0 c

∗
i xi − x∗‖2 = ‖(I −A)−1

∑k
i=0 c

∗
i ui‖2

≤
∥∥(I −A)−1

∥∥
2
‖Uc∗‖2.

We can get a crude bound on ‖Uc∗‖2 from Chebyshev polynomials, using only an assumption on
the range of the spectrum of the matrix A. Assume A symmetric, 0 � A � σI ≺ I and deg(p) ≤ k.
Indeed,

‖Uc∗‖2 = ‖p∗(A)u0‖2 ≤ ‖u0‖2 min
p:p(1)=1

‖p(A)‖2 ≤ ‖u0‖2 min
p:p(1)=1

max
A:0�A�σI

‖p(A)‖2, (6)

where p∗ is the polynomial with coefficients c∗. Since A is symmetric, we have A = QΛQT where
Q is unitary. We can thus simplify the objective function:

max
A:0�A�σI

‖p(A)‖2 = max
Λ:0�Λ�σI

‖p(Λ)‖2 = max
Λ:0�Λ�σI

max
i
|p(λi)| = max

λ:0≤λ≤σ
|p(λ)|.
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We thus have
‖Uc∗‖2 ≤ ‖u0‖2 min

p:p(1)=1
max

λ:0≤λ≤σ
|p(λ)|.

So we must find a polynomial which takes small values in the interval [0, σ]. However, Chebyshev
polynomials are known to be polynomials for which the maximal value in the interval [0, 1] is
the smallest. Let Ck be the Chebyshev polynomial of degree k. By definition, Ck(x) is a monic
polynomial1 which solves

Ck(x) = argmin
p:p is monic

max
x:x∈[−1,1]

|p(x)|.

We can thus use a variant of Ck(x) in order to solve the minimax problem

min
p:p(1)=1

max
λ:0≤λ≤σ

|p(λ)|. (7)

The solution of this problem is given in [23] and admits an explicit formulation:

T (x) =
Ck(t(x))

Ck(t(1))
, t(x) =

2x− σ
σ

.

Note that t(x) is simply a linear mapping from interval [0, σ] to [−1, 1]. Moreover,

min
p:p(1)=1

max
λ:0≤λ≤σ

|p(λ)| = max
λ:0≤λ≤σ

|Tk(λ)| = |Tk(σ)| = 2ζk

1 + ζ2k
, (8)

where ζ is

ζ = (1−
√

1− σ)/(1 +
√

1− σ) < σ. (9)

Since ‖u0‖2 = ‖(A− I)(x0 − x∗)‖2 ≤ ‖A− I‖2‖x0 − x∗‖, we can bound (6) by

‖Uc∗‖2 ≤ ‖u0‖2 min
p:p(1)=1

max
λ:0≤λ≤σ

|p(λ)| ≤ ‖A− I‖2
2ζk

1 + ζ2k
‖x0 − x∗‖2.

This leads to the following proposition.

Proposition 2.2 Let A be symmetric, 0 � A � σI ≺ I and ci be the solution of (AMPE). Then∥∥∥∑k
i=0 c

∗
i xi − x∗

∥∥∥
2
≤ κ(A− I) 2ζk

1+ζ2k
‖x0 − x∗‖2, (10)

where κ(A− I) is the condition number of the matrix A− I and ζ is defined in (9).

Note that, when solving quadratic optimization problems, the rate in this bound matches that obtained
using the optimal method in [6]. Also, the bound on the rate of convergence of this method is exactly
the one of the conjugate gradient with an additional factor κ(A− I).

Remark: This method presents a strong link with the conjugate gradient. Denote ‖v‖B =
√
vTBv

the norm induced by the definite positive matrix B. By definition, at the k-th iteration, the conjugate
gradient computes an approximation s of x∗ which follows

s = argmin ‖x− x∗‖A s.t. x ∈ Kk ,

where Kk = {Ax∗, A2x∗, ..., Akx∗} is called a Krylov subspace. Since x ∈ Kk, we have that x
is a linear combination of the element in Kk, so x =

∑k
i=1 ciA

ix∗ = q(A)x∗, where q(x) is a
polynomial of degree k and q(0) = 0. So conjugate gradient solves

s = argminq:q(0)=0 ‖q(A)x∗ − x∗‖A = argminq̂:q̂(0)=0 ‖q̂(A)x∗‖A,

which is very similar to equation (AMPE). However, while conjugate gradient has access to an oracle
which gives the result of the product between matrix A and any vector v, the AMPE procedure can
only use the iterations produced by (3) (meaning that the AMPE procedure does not need to know A).
Moreover, we analyze the convergence of AMPE in another norm (‖ · ‖2 instead of ‖ · ‖A). These
two reasons explain why a condition number appears in the rate of convergence of AMPE (10).

1A monic polynomial is a univariate polynomial in which the coefficient of highest degree is equal to 1.
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2.3 Nonlinear Iterations

We now go back to the general case where the iterative algorithm is nonlinear, with
x̃i+1 = g(x̃i), for i = 1, ..., k, (11)

where x̃i ∈ Rn and the function g has a symmetric Jacobian at point x∗. We also assume that the
method has a unique fixed point written x∗ and linearize these iterations around x∗, to get

x̃i − x∗ = A(x̃i−1 − x∗) + ei, (12)
where A is now the Jacobian matrix (i.e., the first derivative) of g taken at the fixed point x∗ and
ei ∈ Rn is a second order error term ‖ei‖2 = O(‖x̃i−1 − x∗‖22). Note that, by construction, the
linear and nonlinear models share the same fixed point x∗. We write xi the iterates that would be
obtained using the asymptotic linear model (starting at x0)

xi − x∗ = A(xi−1 − x∗).

Running the algorithm described in (11), we thus observe the iterates x̃i and build Ũ from their
differences. As in (AMPE) we then compute c̃ using matrix Ũ and finally estimate

x̃∗ =
∑k
i=0 c̃ix̃i.

In this case, our estimate for x∗ is based on the coefficient c̃, computed using the iterates x̃i. We will
now decompose the error made by the estimation by comparing it with the estimation which comes
from the linear model:∥∥∥∑k

i=0 c̃ix̃i − x∗
∥∥∥

2
≤
∥∥∥∑k

i=0(c̃i − ci)xi
∥∥∥

2
+
∥∥∥∑k

i=0 c̃i(x̃i − xi)
∥∥∥

2
+
∥∥∥∑k

i=0 cixi − x∗
∥∥∥

2
. (13)

This expression shows us that the precision is comparable to the precision of the AMPE process in
the linear case (third term) with some perturbation. Also, if ‖ei‖2 is small then ‖xi − x̃i‖2 is small
as well. But we need more information about ‖c‖2 and ‖c̃− c‖2 if we want to go further.

We now show the following proposition computing the perturbation ∆c = (c̃∗ − c∗) of the optimal
solution of (AMPE), c∗, induced by E = Ũ − U . It will allow us to bound the first term on the
right-hand side of (13) (see proof A.2 in the Appendix). For simplicity, we will use P = ŨT Ũ−UTU .

Proposition 2.3 Let c∗ be the optimal solution to (AMPE)
c∗ = argmin

1T c=1

‖Uc‖2

for some matrix U ∈ Rn×k. Suppose U becomes Ũ = U + E and write c∗ + ∆c the perturbed
solution to (AMPE). Let M = ŨT Ũ and the perturbation matrix P = ŨT Ũ − UTU . Then,

∆c = −
(
I − M−111T

1TM−11

)
M−1Pc∗. (14)

We see here that the perturbation can be potentially large. Even if ‖c∗‖2 and ‖P‖2 can be potentially
small, ‖M−1‖2 is huge in general. It can be shown that UTU (the square of a Krylov-like matrix)
presents an exponential condition number (see [24]) because the minimal eigenvalue decays very fast.
Moreover, the eigenvalues are perturbed by P , leading to a potential huge perturbation ∆c, especially
if ‖P‖2 is comparable (or bigger) to λmin(UTU).

2.4 Regularized AMPE

The condition number of the matrix UTU in problem (AMPE) can be arbitrary large. Indeed, this
condition number is related to the one of Krylov matrices which has been proved in [24] to be
exponential in k. By consequence, this conditioning problem coupled with nonlinear errors lead to
highly unstable solutions c∗ (which we observe in our experiments). We thus study a regularized
formulation of problem (AMPE), which reads

minimize cT (UTU + λI)c
subject to 1T c = 1

(RMPE)

The solution of this problem may be computed with a linear system, and the regularization parameter
controls the norm of the solution, as shown in the following Lemma (see proof A.3 in Appendix).
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Lemma 2.4 Let c∗λ be the optimal solution of problem (RMPE). Then

c∗λ =
(UTU + λI)−11

1T (UTU + λI)−11
and ‖c∗λ‖2 ≤

√
λ+ ‖U‖22

kλ
. (15)

This allows us to obtain the following corollary extending Proposition 2.3 to the regularized AMPE
problem in (RMPE), showing that the perturbation of c is now controlled by the regulaization
parameter λ.

Corollary 2.5 Let c∗λ, defined in (15), be the solution of problem (RMPE). Then the solution of
problem (RMPE) for the perturbed matrix Ũ = U + E is given by c∗λ + ∆cλ where

∆cλ = −WM−1
λ Pc∗λ = −M−1

λ WTPc∗λ and ‖∆c∗λ‖2 ≤
‖P‖2
λ ‖c

∗
λ‖2,

where Mλ = (UTU + P + λI) and W =
(
I − M−1

λ 11T

1TM−1
λ 1

)
is a projector of rank k − 1.

These results lead us to the following simple algorithm.

Algorithm 1 Regularized Approximate Minimal Polynomial Extrapolation (RMPE)
Input: Sequence {x0, x1, ..., xk+1}, parameter λ > 0

Compute U = [x1 − x0, ..., xk+1 − xk]
Solve the linear system (UTU + λI)z = 1
Set c = z/(zT1)

Output:
∑k
i=0 cixi, the approximation of the fixed point x∗

The computational complexity (with online updates or in batch mode) of the algorithm is O(nk2)
and some strategies (batch and online) are discussed in the Appendix A.3. Note that the algorithm
never calls the oracle g(x). It means that, in an optimization context, the acceleration does not require
f(x) or f ′(x) to compute the extrapolation. Moreover, it does not need a priori information on the
function, for example L and µ (unlike Nesterov’s method).

2.5 Convergence Bounds on Regularized AMPE

To fully characterize the convergence of our estimate sequence, we still need to bound the last term
on the right-hand side of (13), namely ‖

∑k
i=0 cixi − x∗‖2. A coarse bound can be provided using

Chebyshev polynomials, however the norm of the Chebyshev’s coefficients grows exponentially as k
grows. Here we refine this bound to better control the quality of our estimate.

Let g(x∗) � σI . Consider the following Chebyshev-like optimization problem, written

S(k, α) , min
{q∈Rk[x]: q(1)=1}

{
max
x∈[0,σ]

((1− x)q(x))
2

+ α‖q‖22
}
, (16)

where Rk[x] is the ring of polynomials of degree at most k and q ∈ Rk+1 is the vector of coefficients
of the polynomial q(x). This problem can be solved exactly using a semi-definite solver because it
can be reduced to a SDP program (see Appendix A.4 for the details of the reduction). Our main result
below shows how S(k, α) bounds the error between our estimate of the optimum constructed using
the iterates x̃i in (RMPE) and the optimum x∗ of problem (1).

Proposition 2.6 Let matrices X = [x0, x1, ..., xk], X̃ = [x0, x̃1, ..., x̃k], E = (X − X̃) and scalar
κ = ‖(A− I)−1‖2. Suppose c̃∗λ solves problem (RMPE)

minimize cT (ŨT Ũ + λI)c
subject to 1T c = 1

⇒ c̃∗λ =
(ŨT Ũ + λI)−11

1T (ŨT Ũ + λI)−11
(17)

in the variable c ∈ Rk+1, with parameters Ũ ∈ Rn×(k+1). Assume A symmetric with 0 � A ≺ I .
Then

‖X̃c̃∗λ−x∗‖2 ≤

(
κ2 +

1

λ

(
1 +
‖P‖2
λ

)2(
‖E‖2 + κ

‖P‖2
2
√
λ

)2
)1

2(
S(k, λ/‖x0 − x∗‖22)

) 1
2‖x0−x∗‖2,

with P is defined in Corollary 2.5 and S(k, α) is defined in (16).
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We have that S(k, λ/‖x0−x∗‖22)
1
2 is similar to the value Tk(σ) (see (8)) so our algorithm achieves a

rate similar to the Chebyshev’s acceleration up to some multiplicative scalar. We thus need to choose
λ so that this multiplicative scalar is not too high (while keeping S(k, λ/‖x0 − x∗‖22)

1
2 small).

We can analyze the behavior of the bound if we start close to the optimum. Assume

‖E‖2 = O(‖x0 − x∗‖22), ‖U‖2 = O(‖x0 − x∗‖2) ⇒ ‖P‖2 = O(‖x0 − x∗‖32).

This case is encountered when minimizing a smooth strongly convex function with Lipchitz-
continuous Hessian using fixed-step gradient method (this case is discussed in details in the Appendix,
section A.6). Also, let λ = β‖P‖2 for β > 0 and ‖x0 − x∗‖ small. We can thus approximate the
right parenthesis of the bound by

lim
‖x−x∗‖2→0

(
‖E‖2 + κ

‖P‖2
2
√
λ

)
= lim
‖x−x∗‖2→0

(
‖E‖2 + κ

√
‖P‖2

2
√
β

)
=
κ
√
‖P‖2

2
√
β

.

Therefore, the bound on the precision of the extrapolation is approximately equal to

‖X̃c̃∗λ − x∗‖2 . κ

(
1 +

(1 + 1
β )2

4β2

)1/2√
S

(
k,

β‖P‖2
‖x0 − x∗‖22

)
‖x0 − x∗‖2

Also, if we use equation (8), it is easy to see that√
S (k, 0) ≤ min

{q∈Rk[x]: q(1)=1}
max

x∈[0,σ1]
|q(x)| = Tk(t(σ)) =

2ζk

1 + ζ2k
,

where ζ is defined in (9). So, when ‖x0 − x∗‖2 is close to zero, the regularized version of AMPE
tends to converge as fast as AMPE (see equation (10)) up to a small constant.

3 Numerical Experiments

We test our methods on a regularized logistic regression problem written

f(w) =
∑m
i=1 log

(
1 + exp(−yiξTi w)

)
+ τ

2‖w‖
2
2,

where Ξ = [ξ1, ..., ξm]T ∈ Rm×n is the design matrix and y is a {−1, 1}n vector of labels. We used
the Madelon UCI dataset, setting τ = 102 (in order to have a ratio L/τ equal to 109). We solve this
problem using several algorithms, the fixed-step gradient method for strongly convex functions [6,
Th. 2.1.15] using stepsize 2/(L+ µ), where L = ‖Ξ‖22/4 + τ and µ = τ , the accelerated gradient
method for strongly convex functions [6, Th. 2.2.3] and our nonlinear acceleration of the gradient
method iterates using RMPE in Proposition 2.6 with restarts.

This last algorithm is implemented as follows. We do k steps (in the numerical experiments, k is
typically equal to 5) of the gradient method, then extrapolate a solution X̃c̃∗λ where c̃∗λ is computed
by solving the RMPE problem (17) on the gradient iterates X̃ , with regularization parameter λ
determined by a grid search. Then, this extrapolation becomes the new starting point of the gradient
method. We consider it as one iteration of RMPEk using k gradient oracle calls. We also analyze the
impact of an inexact line-search (described in Appendix A.7) performed after this procedure.

The results are reported in Figure 1. Using very few iterates, the solution computed using our estimate
(a nonlinear average of the gradient iterates) are markedly better than those produced by the Nesterov-
accelerated method. This is only partially reflected by the theoretical bound from Proposition 2.6
which shows significant speedup in some regions but remains highly conservative (see Figure 3 in
section A.6). Also, Figure 2 shows us the impact of regularization. The AMPE process becomes
unstable because of the condition number of matrix M , which impacts the precision of the estimate.

4 Conclusion and Perspectives

In this paper, we developed a method which is able to accelerate, under some regularity conditions,
the convergence of a sequence {xi} without any knowledge of the algorithm which generates this
sequence. The regularization parameter present in the acceleration method can be computed easily
using some inexact line-search.
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Figure 1: Solving logistic regression on UCI Madelon dataset (500 features, 2000 data points)
using the gradient method, Nesterov’s accelerated method and RMPE with k = 5 (with and without
line search over the stepsize), with penalty parameter τ equal to 102 (Condition number is equal
to 1.2 · 109). Here, we see that our algorithm has a similar behavior to the conjugate gradient:
unlike the Nesterov’s method, where we need to provide parameters µ and L, the RMPE algorithm
adapts himself in function of the spectrum of g(x∗) (so it can exploit the good local strong convexity
parameter), without any prior specification. We can, for example, observe this behavior when the
global strong convexity parameter is bad but not the local one.
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Figure 2: Logistic regression on Madelon UCI Dataset, solved using Gradient method, Nesterov’s
method and AMPE (i.e. RMPE with λ = 0). The condition number is equal to 1.2 · 109. We see that
without regularization, AMPE is unstable because ‖(ŨT Ũ)−1‖2 is huge (see Proposition 2.3).

The algorithm itself is simple. By solving only a small linear system we are able to compute a good
estimate of the limits of the sequence {xi}. Also, we showed (using the gradient method on logistic
regression) that the strategy which consists in alternating the algorithm and the extrapolation method
can lead to impressive results, improving significantly the rate of convergence.

Future work will consist in improving the performance of the algorithm by exploiting the structure of
the noise matrix E in some cases (for example, using the gradient method, the norm of the column
Ek in the matrix E is decreasing when k grows), extending the algorithm to the constrained case, the
stochastic case and to the non-symmetric case. We will also try to refine the term (16) present in the
theoretical bound.
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